我們知道極片在干燥期間,由于SBR的遷移形成了不同的漿料微觀結構和極片微觀結構,漿料和極片的微觀結構會直接影響到電池的性能:當炭黑和活性物質均勻分
散在漿料和電極中時,電池就會有表現出較好的性能。因此,為了提高電池的性能我們必須了解漿料以及極片的微觀結構形成的機理。
當只有石墨顆粒沒有SBR的時候,如圖1a粘度隨剪切應力的變化:,在低剪切力下粘度保持不變,表明體系類似于固相的表現。在過了某一臨界點后,粘度就會急劇下降。這個點就把它定義為屈服應力。此時存儲模量G’大于損失模量G’’。這種情況下體系會就形成不分散的凝膠結構,在沒有SBR的時候石墨顆粒由于其疏水性而形成團聚結構。隨著SBR的添加,石墨的凝膠結結構有些減少,但是到SBR含量15%時屈服行為消失,剪切變稀行為發生,G’’大于G’,此時石墨膠凝結構已不存在。這表明由于SBR添加量的增加石墨由顆粒團聚結構變為類似液體的均勻結構。
圖1 (●●)0%, (▲△) 3%, (■□) 8%, (▼▽) 15%, (◆◇) 30 wt%
圖2 (a)&(b)graphite 50 wt% +SBR 3 wt%, (c)&(d) graphite 50 wt% +SBR 30 wt%
通過對石墨-SBR漿料的流變性能和低溫掃描電鏡圖像分析可知,從凝膠到分散的漿料微觀結構變化過程可以證明是SBR在起作用。當SBR少量時不起主要作用,隨著添加量的升高,由于存在SBR表面的帶電表面活性劑使石墨顆粒產生靜電斥力而分散開來。
第二種:石墨-CMC體系
同樣的,當沒有CMC添加的情況下漿料表現為固相行為。當添加量為0.1%時漿料的粘度和屈服應力有一定降低但屈服行為仍占主導。當加到0.4%時情況就徹底變了:屈服行為消失,剪切變稀行為出現。此外與低濃度時不一樣,隨著CMC量增加粘度也增加開始增加。而且當CMC增加到1.4%時漿料的屈服應力行為又重新出現了,也就是說已經分散的顆粒又重新形成了團聚結構。
圖3中c和d顯示基于不同CMC含量的石墨漿料的粘彈性。0.4%以下時G’大于G’’,漿料以屈服應力占主導,處于團聚狀態。
圖3 (a) & (b)不同CMC含量漿料的粘度(c)&(d)漿料的粘彈性
那么如何解釋這種現象呢?
我們知道CMC是一種聚合物鹽,在水溶液中它分解成鈉陽離子和陰離子基團,這些離子通過靜電力相互作用影響聚合物的結構。圖4為不同濃度的CMC的粘度變化:
圖4 CMC濃度對應粘度變化
可以看到三個過渡濃度的闕值C*,C**,C***,且隨著濃度升高呈冪指數型增長分別為(指數V~0.58,1.53,4.36,7.82)
1.當C<c*時cmc時聚合物鏈開始重疊
2.當C*<c<c**時聚合物鏈開始有纏繞
3.當C** < C < C***時聚合物鏈段進一步糾纏
4.當C > C***時聚合物溶液出現凝膠行為
如圖5定義 tan δ = G’’/G’,作為負極漿料和CMC溶解度在不同含量下的函數, 在CMC濃度低于0.28wt%時,負極漿料有凝膠團聚形成,像SBR一樣CMC分子往往在石墨表面吸附,并且吸附量隨著CMC濃度的增加而增加。此時粘度和模量都隨著CMC添加漿減少,直到濃度達到0.28%,意味著于CMC在石墨表面吸附凝膠強度下降。
隨著tan δ持續增加也就是CMC含量繼續升高,凝膠結構逐漸消失,漿料顯示出類液體行為。這可以用吸附理論來解釋,CMC中的羧甲基單元在水溶液中解離出的COO單元,隨著CMC含量的增加,其在石墨表面的吸附力也增加,石墨顆粒通過吸附在表面的CMC空間位阻斥力而分散。可以參考圖6 (c)&(d)電鏡照片。
隨著CMC的量持續增長達到1.3%臨界點,漿料又重新出現凝膠結構,這種微觀結構變化可以用CMC溶液在高濃度下凝膠來解釋。從圖5也可以看出CMC的水溶液含量大概出現在1.9%.,CMC分子形成凝膠結構后,石墨顆粒隨之團聚嵌入在內(圖6ef)
圖5
圖6(a)&(b)CMC 0.07 wt%, (c)&(d) CMC 0.7 wt%, (e)&(f)CMC 1.7 wt%
圖7 (a)&(b) 0.07 % CMC, (c)&(d) 0.7% CMC,(e)&(f) 1.7%CMC (○●) 0%, (△▲) 2%, (□■) 5%SBR
圖8 (a)&(b) CMC 0.07% SBR 5%,(c)&(d)CMC 0.7% SBR 5%, (e)&(f)CMC 1.7% SBR 5%